
Journal of Statistical Physics, Vol. 56, Nos. 1/2, 1989 

Renormalization of Aubry-Mather Cantor 

J. J. P. Veerman 1 and F. M. Tangerman 2 

Received July 2, 1988; final September 16, 1988 

Sets 

Let f be a two-dimensional area-preserving twist map. Given an irrational rota- 
tion number co in the rotation interval off, there is an invariant recurrent set 
on which f preserves the circular ordering and which has rotation number co. 
For large nonlinearity, the parameter regime we are interested in, this set is a 
Cantor set. We show that well-ordered (minimizing) sets with rotation numbers 
close to co are exponentially close to the Cantor set under study. The detailed 
configuration of well-ordered (minimizing) sets is universal and depends on one 
parameter, namely the Lyapunov coefficient of the Cantor set. There is a quan- 
titative correspondence between this and similar behavior in the noninvertible 
circle map. 

KEY WORDS: Twist maps; Aubry Mather Cantor sets; incommensurate 
minimizing states without translational invariance; first return maps; scaling; 
exponential approximation by periodic orbits. 

1. I N T R O D U C T I O N  

As a s imple  m o d e l  of i r regu la r  behav io r ,  a r ea -p rese rv ing  twist  m a p s  of the 
cy l inder  p resen t  us wi th  cons ide rab l e  m a t h e m a t i c a l  p rob lems .  O n  the o the r  

hand ,  some  of their  aspects  are r e a s o n a b l y  well u n d e r s t o o d .  In  pa r t i cu la r ,  
o rde r -p r e se rv ing  b e h a v i o r  is at least  qua l i t a t ive ly  well u n d e r s t o o d  in  te rms 
of K A M  theory  ( 1 / a n d  in te rms of m i n i m a  of a ce r ta in  f u n c t i o n a l  ( C a n t o r i  
or  A u b r y  M a t h e r  sets(2'5'6'13'21)). The  p u r p o s e  of this work  is to o b t a i n  a 

precise,  q u a n t i t a t i v e  ins igh t  in to  the  way  these o rde r -p re se rv ing  orbi t s  wi th  
r a t i o n a l  r o t a t i o n  n u m b e r  a c c u m u l a t e  on  the A u b r y - M a t h e r  sets tha t  have  

i r r a t i o n a l  r o t a t i o n  n u m b e r  once these are Cantor  sets. We will conc lude  
tha t  o rde r -p re se rv ing  b e h a v i o r  in twist  m a p s  is q u a n t i t a t i v e l y  the same  as 
s imi la r  b e h a v i o r  in  n o n i n v e r t i b l e  m a p s  of the circle. 
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In the presence of small nonlinearity in a two-dimensional area- 
preserving twist map f,  the behavior of the orbits is to some extent 
organized by the order-preserving orbits. In this case, the KAM theorem 
implies that an invariant (KAM) curve can be assigned to most irrational 
rotation numbers. These are continuous and Lipschitz and on them, f 
preserves the circular ordering (order-preserving orbits). The invariant 
regions between these curves (Birkhoff zones) typically consist of hyper- 
bolic order-preserving periodic orbits alternating with elliptic islands 
(called resonances), as was already observed by Poincar6. 

Our notation will be as follows. The minimizing order-preserving 
orbits which are recurrent will be denoted by Eo), where co is the rotation 
number associated with the set. Homoclinic minimizing orbits are denoted 
by Ep/e or Ep/u+ (we will not consider irrational homoclinic orbits). 

Hausdorff limits (H-lim) of these sets are well defined, (13) 

H-lim E~ = Ep/q u Ep/q+ = clos(Ep/q+ ) 
:~ ,. p / q  + 

H-lim E~ = Ep/q k2 Ep/q_ = clos(Ep/q ) 
ct " p / q  - -  

(1.1a) 

For co irrational 

Eo) ~_ H-lim E~ (1.1b) 

When the nonlinearity is increased, the invariant curves break up into 
Cantor sets with irrational rotation number. The magnitude of the non- 
linearity at which a curve breaks depends on the number-theoretic proper- 
ties of its rotation number. (lz,13) Once the curve has broken up, it appears 
to have a positive Lyapunov exponent. (9) To our knowledge, the only case 
for which hyperbolicity of E o has been proven is for the standard map with 
large nonlinearity. (4/ 

A s s u m p t i o n .  ("Hyperbolicity") Note that, if Ep is a Cantor set, 
then the union of the Aubry-Mather  sets sufficiently close to E;  is a hyper- 
bolic set (which we denote by H, see refs. 8 and 21). This implies that each 
point x of H has stable and unstable manifolds WS(x) and WU(x), which 
depend continuously on x, and satisfy: 

if y~  WS(x): d(f '(x),  f~(y)) < C2 ~(x) d(x, y) as n---* 

if yE W"(x): d( f  " ( x ) , f - ~ ( y ) ) <  C2 ~(x) d(x, y) as n ~ 
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Fig. 1. The diamond conjecture. 

where C is a constant and the "eigenvalues" 2(x) are uniformly greater 
than one. (For the definition of uniform hyperbolicity see ref. 7.) 

The process of breaking up is important for two reasons. First, it 
implies the loss of global stability, as eventually no invariant curves confine 
the behavior of orbits. The diffusion across the Cantor sets is described in 
refs. 12 and 21. Second, the breaking up implies the loss of translation 
invariance of certain minimizing orbits. ~2) MacKay ~1~ summarizes a renor- 
realization group approach to finding the geometric properties of the map 
at the point where invariant curves break up. In this work, we develop a 
renormalization approach that encodes the geometrical properties of the Ep 
after they have broken up, thereby explaining the "bunching" observed by 
Chen et al. ~3) 

Our approach is based on the following result, t22~ 

D i a m o n d  C o n f i g u r a t i o n .  If E~ is hyperbolic, then for r/s and p/q 
(r/s ~ c~ < p/q) close enough to ~, E~ is contained in a region J that is the 
union of "diamonds" and whose boundary is formed by local stable and 
unstable manifolds to Ep/q and Er/s only. (See Fig. 1.) 

In the next section we give a brief outline of some of the topological 
properties of irrational Aubry-Mather  sets. In Section 3, we discuss how to 
set up a "first return map" in a neighborhood of the Aubry-Mather  set. 
This is done in close analogy with renormalization practices in one dimen- 
sion. Some properties of this map will be briefly discussed in Section 4. 
Finally, in Section 5, we perform the calculations necessary to see how the 
rational orbits approach the Cantor set. 
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2. T H E  T O P O L O G Y  OF A U B R Y - M A T H E R  SETS 

We summarize previous work on Aubry Mather sets (21'22) that 
prepares the stage for the ideas to be developed in this paper. For proofs 
and further results, we refer the reader to refs. 21 and 22. 

First, there is a natural ordering of the sets E~. If p >/~, then E o lies 
above E~. Here "above" has the following meaning. Take a rational p/q so 
that p >p/q >/~. Denote the minimizing q periodic orbit associated with 
that rational by Ep/u and the minimizing homoclinic orbit by Ep/q+ and 
Ep/q_, We construct a curve 7(p/q+ ) as follows. Choose a point s of Ep/u+ 
and connect s along the invariant manifolds to the neighboring points of 
Ep/u. Repeat this q times so that ~/separates the cylinder. If 7 is a non-self- 
intersecting curve, then ER lies above it and E• below. In case ~ is self-inter- 
secting, the meaning of "above" is somewhat more subtle. 

For  f generic, there is a set I of rotation numbers which is open and 
dense in the rotation interval J, such that if p is in I, then E o is hyperbolic 
(this had already been proven by Le Calvez(8)). In some cases I equals j.(4~ 
We can define a hyperbolic set H=Up~KEo, where K ~ I  is a compact 
subset of L The hyperbolicity together with the previous result leads to the 
"diamond" configuration discussed in the introduction. Hyperbolicity will 
be assumed from now on without being mentioned explicitly. 

For the study of transport across the Aubry-Mather sets, it is impor- 
tant to know how many gap orbits a minimizing Cantor set has. Under 
certain conditions for f ,  there is only one gap orbit. 

Let Gi be a gap in Epi/u~+ chosen in such a way that lim Gi = G, where 
G is a gap in E~ and ~ = l i m  p]qi is irrational. Denote the pieces of 
invariant manifolds connecting G~, resp. G, by W~' and W~, resp. W ~ and 
W s. The fact that the Cantor sets have only one gap can also be used to 
establish that lim W~ = W ~ and lim WS~ = WL This implies that the region 
that diffuses across an Aubry Mather Cantor set is a limit of resonance 
overlaps. 

From now on, we let 2(p) denote the Lyapunov coefficient > 1 for an 
order-preserving minimizing set Ep. Since these sets are uniquely ergodic 
with invariant probability measure ~(p),(13~ 2(p) is well defined and 
constant/~ almost everywhere. Let E o be a hyperbolic minimizing set with 
irrational rotation number; then 2(p) is continuous at p = co. 

Finally, we mention a lemma that will be needed later. Let x E Ep and 
let v be the vertical directed from x upward. Going around clockwise, 
beginning at v, the first invariant direction is unstable. We will denote this 
direction by W~(x) and the subsequent ones by W~(x), where i s  {2, 3, 4}. 
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3. T H E  F IRST  R E T U R N  M A P  

In this section we will define the first return map from which we will 
later calculate how periodic orbits approximate the Cantor  set. 

Three remarks are in order before we do the construction. Our con- 
struction is entirely analogous to the construction of the first return map 
of a one-dimensional piecewise linear noninvertible circle map. We will 
therefore see, and this is the second remark, that our results are essentially 
the same as those for this class of circle maps. ~18'19) Here we need some 
assumptions to control the nonlinearities. We have chosen them in such a 
way that their natural one-dimensional analogues can be proven to 
hold/16~ Third, our construction makes use of invariant manifolds to the 
Cantor  set. Therefore we cannot apply it directly to the critical case of the 
breaking up of invariant circles. I1~ 

We will assume from now on that f has a single minimizing p/q orbit 
Ep/q for all rotation numbers in the rotation interval of the map. This is 
true for generic f 

Let us consider one of the diamonds Ki of Fig. 1. Such a diamond is 
formed by two minimizing hyperbolic periodic points sg and S~+l of rota- 
tion number pi/q~ and P~+l/q,+l and their local stable and unstable 
manifolds. Notice that the stability type of the manifolds is determined 
by the lemma mentioned in Section 2. From now on, we will take co to 
be a fixed irrational rotation number  with continued fraction expansion 
(2) ~--- [-0~1, ~2,""  ] and p]q~ its continued-fraction approximants.  

We define a first return map on (a subset of) KI to K~ as follows (see 
Fig. 2). Let 

Ai= f -q~(Ki) /x Ki 

Bi= f -q~+l(Ki) /x Ki 

Define Ri: Ai u Bz ~ Ki a s f  qi on Ai a n d f  q,+' on Bi and assume that A~ and 
B~ are single strips. It is important  to observe that this definition is only 
correct if A~ does not overlap B~. This is not much of a restriction, since, 
for i large enough, fq~ has large eigenvalues. On the other hand, bearing in 
mind that we are only interested in those orbits of Ri whose projection 
preserves the circular ordering, we could have restricted to a much smaller 
set, thereby avoiding the problem altogether. 

Since the Ep,/q, uniformly approximate Eo~ [see Eq. (1.1)], the diameter 
of the diamonds K~ goes to zero as i--* or. It then follows by standard 
hyperbolic theory/7~ that the invariant manifolds which form the boundary 
of K~ uniformly approximate straight line segments. 
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/ J 

/:Bi: 
/ 

S i + l  

Fig. 2. The action of the R. The unshaded region is mapped outside K. 

We know by the H a r t m a n - G r o b m a n n  theorem that fq~ and fq'~ c a n  

be linearized in s~ (respectively s~+ ~). In order to control the nonlinearities 
of the return map, we introduce the following somewhat stronger assump- 
tion: 

Assumption 3.1. f q'.Dfq'(ss) restricted to the nonwandering set 
in A i and f q'+~.Dfq'+~(si+l) restricted to the nonwandering set in B~ 
converge to the identity in a H61der norm. H6) 

As stated before, 2(p) is continuous at p = co. Again, we conjecture a 
stronger result. 

Assumpt ion 3.2 .  Let co be any irrational and Pi/qi its continued- 
fraction approximants.  There is a constant C(co) not dependent on q~ such 
that 

IR(co) - A(p~/qe)l < C(co)/q, 

We note that in the case of the standard map with sufficiently large 
perturbation these assumptions have been proved in ref. 16. 

Suppose, then, that PJ/qi is less than co and that of all the order-preser- 
ving orbits intersecting Ki, we want to find the one that is periodic with 
rotation number (piq-~i+2Pi+l)/(qi+o;,.+2qi+l)=Pi+Z/qi+2 (the next 
continued-fraction approximant) .  Then there is a qi+z-periodic point x in 
K~ which does not leave Ki under repeated application of R~ and satisfies 
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(see Fig. 2) x e A, and x' �9 Bi with fq '(x)  = x' and f~'-2q'+l(x ') = x. It follows 
that x is an (c~i+2+ 1)-periodic orbit of R~. The assumptions imply (see 
Section 5) that we can replace these iterates by their respective lineariza- 
tions at si and s~+ ~. 

To study this map conveniently, one can linearly change coordinates 
in Ki to (x, y) �9 [0, 1 ] x [0, 1 ] in such a way that s~ corresponds to (0, 0) 
and s~+l to (1, 1). D f  qi contracts vertically and expands horizontally at a 
r a t e  "c i=.~(p i /q i )  qi and similarly for D f  q~+~ at a rate zf+ 1. Thus, R~ can be 
written as 

~ x ' = r i x  for x ~  l - 1 / r i +  1 (3.lb) s ~y,= y/~i 

x ' = l - r i + l ( l - x )  for x~> 1 -  1/zi+ 1 (3.1b) 
gi: l y , =  l _ ( l _  y)/r~+~ 

4. P R O P E R T I E S  OF T H E  F IRST  R E T U R N  M A P  

We indicate some of the properties of the first return map R defined 
in the previous section. The results in this section were previously discussed 
in refs. 17 and 18, where they arose in connection with the study of non- 
invertible circle maps. 

Clearly, the map R i is one out of a two-parameter family of maps, the 
parameters being ri and ri+~. In Section 5, we will show that, for our 
purposes, it suffices to only consider a one-parameter family, namely 

{.~' = rx m o d ( ~ -  1) (4.1) 
R(r): '=  y / r +  ( r -  1)/z . i n t { x ( z -  1)/r} 

(Here, we have assumed that r > 2.) R(r) is the linear map with eigenvalues 
r and l /r  and fixing the points (0, 0) and (1, 1). 

We note that R(r) restricted to its recurrent set is conjugate to the 2 
shift on {0, 1 }z, the space of bi-infinite binary sequences 

( . . . i_ l io . i l i2  ...) 

The conjugacy is given by the following formulas: 

x = Cl(z) ~ ij./z Ijl 
0 

y = C2(r) ~ ij/~ Ijl 
0 

Note that the rotation number in this context corresponds to limn(1/n) 
Z]' ij. The notion of circular ordering can be defined by projecting orbits 
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to a line l through the point (0, 0) that does not intersect the unit square, 
as drawn in Fig. 2. 

The following results can be found in the articles quoted in the intro- 
duction to this section. They are proven there in the context of linear maps, 
but carry over to general hyperbolic return maps that admit the same 
symbolic dynamics. 

Result 1, There is a constructive procedure to find the set At of all 
recurrent points whose orbits under R projected to l are order preserving. 
Moreover, the sets At~ and Al2 a r e  equal for each l as defined above. We 
denote this set simply by A. 

R e s u l t  2. For each rotation number p/q in [0, 1], A contains a 
single order-preserving orbit Ep/q. 

R e s u l t  3. The Hausdorff limit set of the sequence Ep,/q, is equal to 
Eo~ for P~/qi --* co. 

R e s u l t  4. Consider l as the new x axis. There exists a family of con- 
tinuous, non-self-intersecting Lipschitz (as graphs on the new x axis) 
curves 7(P) such that for each p, Epc7(p)  and 7 ( p ~ ) A T ( p 2 ) = ~  iff 
Pl r Moreover, 7(Pl) lies above 7(P2) iff 01 > P2- 

Figure 3 is a picture of the set A for R(2), and Fig. 4 depicts E~ for 

�9 . ~ ,  7 

! ! ! ! !  

Y 

o !i 
d l  " 

Fig. 3. 

;r 

~ ; ;  . . .  

X 

The order-preserving orbits of R(2). 
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Y 

~ J  

, f 

x 

Fig. 4. The golden mean recurrent set of R(2). 

./.,_ / ./., r !!!i ~- 

Fig. 5. The order-preserving orbits of R(I.2). The indicated distance is equal to 1~, 2. 
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that map, where co is the golden mean. Figure 5 pictures the set A again, 
but this time for the map R(1.2). 

A least remark concerns the methods used to prove the above results. 
It is interesting to know that these make no reference to general results 
about twist maps, such as the theorems of Mather and Aubry. 

5. A P P R O X I M A T I O N  OF CANTOR SETS 

In this section, we study analytically how the Ep#qi approach a Cantor 
set E~ as Pi/qi--" co. To simplify the exposition, we will take co to be the 
golden meat/ co = [1, 1,...]. In the treatment we give, the convergence of 
Ep,/q, close to a Cantor set E will be completely determined by a single 
parameter, namely, 2(co), the Lyapunov coefficient associated with E~. In 
this sense, we can speak of universality. It will also turn out that this 
behavior is quantitatively the same as the corresponding behavior in non- 
invertible circle maps. As a result of these considerations, it will become 
clear why and how high periodic orbits tend to group together as the 
parameter mentioned above increases. 

We are interested in characterizing certain properties of the recurrent 
orbits of the map Ri defined on K~. As discussed in the previous section, 
we can assign rotation numbers to order-preserving orbits of Ri. These 
numbers bear a simple relation to the rotation number of the same orbit 
under f Recall that the periodic orbits in the boundary points of Ki have 
rotation number P~/qi, resp. Pi+ 1/q~+ 1, where we assume that the latter is 
the larger of the two. From the definition of R~, one concludes easily that 
a rotation number c~= r/s (in lowest terms) of Ri satisfies the following 
correspondence: 

r {of Ri} ~ ( s - - r ) p i + r p i + l  { o f f}  
s ( s - - r )  q i+rq i+l  

=(1- -a )p ,+c~p1+l  { o f f}  (5.1) 
(1 - ~) qi + c~qi+ 1 

We now proceed to study the scalings associated with the Cantor set 
E~. The first step entails a substantial simplification of the problem. We 
reduce the study of the sequence of maps Ri to the study of one single map 
R(r) (with one parameter) as follows. 

The eigenvalues of Ri at sr is 2(p~/qs) u~ and at s~+l it is 
).(pi+ 1/qg+l)Ui+L The second assumption in Section 3 now implies that 

1 C(co)_ 1 q' ~ [- ~(P]q,)7 . C(co) ]q' 
~- - -  < 1 ( 5 . 2 )  L ucot ] 
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Therefore, [2(pjqi)/2(o))] q~ is contained in an interval (1/k(co), k(co)) not 
dependent on q~. 

Now consider R()~(co)) on the unit square, as in (4.1) with ~ = 2 ( o ) .  
One observes that, possibly after a linear change of coordinates, the first 
return map of R(2(co)) restricted to the square Ki is precisely Rg plus a 
bounded error. In other words, R(2(co)) is a linear map that mimics, quan- 
titatively and qualitatively, the order-preserving behavior o f f  restricted to 
some diamond K~, but not necessarily outside that diamond. 

Now we are in a position to calculate scalings. Consider the following 
quantity: 

Ip/q=max min{l~(pl)--zr(P2)llPIeEp/q+,p2eEp/q} (5.3) 
Ep/q + Ep/q 

where ~ is the projection along the stable direction. Ip/q is the largest 
distance between homoclinic points and their nearest periodic point in 
Ep/u+ (see Fig. 5). One concludes from ref. 18 that Ip/q satisfies 

lip/el = Cp/q. 1/(2 q - 1) 

where Cp/q is uniformly bounded away from zero and infinity. Set 

1 2'  ~,-P~+, =-~ (llp,/,,I + [Ip,+,/,,.~[) + IIr/.f 

where the summation runs over all rationals r/s, pjq~<r/s<p~+jq~+~. 
Now, define the "exponent" 6, following Shenker, (~5) 

6~= fi' x--fis (5.4) 

Then 6~ grows as Kp,/q, .2 +ui "' z, where the K are uniformly bounded (see 
ref. 18, where this calculation is done for circle maps). We note here that 
for i large enough, Ifli-fli+~l is an upper bound for the distance of s i to 
Eco. 

An alternative way to calculate how distances in Ki scale is achieved 
by using formula (3.1). To approximate the Cantor set by its continued- 
fraction approximants, we look for a 2-periodic orbit in each Ki. That is, 
in formula (3.1) we have 

f~og,(x, y)= (x, y) 

This is easily solved. Because f i  and gi are approximately linear (modulo a 
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bounded error in the derivative) and both f ,  and gi have to map the point 
in narrow strips, namely B i and A~, the orbit is (see Fig. 6) 

( 1 1 
e l =  ri+k,(co)' 1 r i+ l+k, (co  ) 

( 1 
p 2  = 1 ri+l+ki(co), +k,(co ) 

where ki(co) is a uniformly bounded error. To do the next step of the 
calculation, we set si+2 equal to P2. Define 

~(s~)- ~(si+~) 
d22+5-- , ;;) 

Then by straightforward calculation, one arrives at 

&;~ 7,,/,, .2(~o) +q' (as i--* oo) 

and 7 uniformly bounded. This is the length scaling of the shortesl edges of 
the diamonds. (Note that these scalings are not quite the same ones as 
before.) By the diamond conjecture, which says that the Cantor set is con- 
tained in the diamonds, it also equals the scaling of the areas of successive 
diamonds Ka_ 1 and K i. 

Si 

...... ! .......... ~ S i + 3  

S i +  2 : 

............ � 8 2  

S i + 3  

S +21 

S i + l  

Fig. 6. The  nested renormal iza t ion  cons t ruc t ion .  
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We now proceed to find the asymptotic behavior of the Hausdorff 
distance d(Ep,/q~, Eo~). Consider the domain of Ri and set up the symbolic 
dynamics as described in Section 4: let x be a point in the recurrent set of 
Ri; then 

i n=0  if x ~ A  i 

in= 1 if x ~ B i  

Since we discuss the golden mean in this section, we can substitute qn-l/qn 
for r/s and qi i for pi in (5.1). We can then translate the rotation numbers 
under Ri and under f as follows: 

q~ ~ {ofR~},-~ (qn-q~-~)q~-~+q~ ~q~{off} 
q, (q~--q~- l )q i+q~ lqi+l 

- q ' + " - '  {o f f}  (5.5) 
qi+n 

Consider the q,_~/q, and co order-preserving sets of Ri, Eu, ~/q .{Ri}  and  
E,,{R~}. The shortest binary sequence on which two points u and v in 
Eq,_~/q,{Ri} and E~{R~}, respectively, can differ has length q,, (see 
Appendix). Since we are dealing with bi-infinite sequences, this means that 
there are two such points u and v with different values for either i-i~t~q,/~l 
or  iint[qn/2 ]. SO 

f (  i ) . d( Rq"/2(u ), Rq"/Z(t))) = d( A ~, B~) 

where f ( i )  is a factor that corrects for the fact that we replaced int[q/2]  by 
q/2. Recall that under the assumptions made in Section 3 and Eq. (5.2), R~ 
stretches horizontal distances in Ag by a factor ),((,o)q~(l q-O) and in B~ by 
a factor .,].(r + c~), where c~ is uniformly bounded. Moreover, we can 
choose i so big that g is arbitrarily close to zero. From the foregoing [using 
(5.5)J, we then obtain 

(1 -~ (~) qn/2 ~((D) (qn-qn I)q'/2~((D)qn-lqi+l/2f(i) d(u, D) = d(Ai, Bi) 

It is not hard to see that under the assumptions made, the factor 
d(A~, Bi)/f(i) is of order at most )~(co) q'. Since there are finitely many 
diamonds formed by the invariant manifolds of Eq~_l/U ~ and Eq,/q,+~, one 
obtains finally that 

d( Eq ..... ~/qj+., E,~) = ,~( (o ) -q i+" / ; (  l -}- c~ ) q~/2 

where 6 may depend on i and n but is uniformly bounded (and small in 
absolute value). 
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Finally, we observe that )v(co) varies as a function of the parameters in 
the map f This explains the "bunching" observed numerically by Chen 
etal. ~3~ Notice that we explain the bunching of continued-fraction 
approximants and not of Farey approximants, the latter of which are 
studied by these authors. This difference is essential only when co is an 
irrational of unbounded type (that is: the ei are unbounded). In that case, 
which is not studied in the quoted paper, the convergence can almost 
certainly be much worse for the Farey approximants (note that if co < l/N, 
then for all n ~ { 1, 2,..., N} the quotient 1/n is a Farey approximant). 

The bunching phenomenon can be simulated simply by studying the 
map R(~) for different ~. As an example, we refer to Figs. 3 and 5; in the 
former figure r is greater and the orbits cease being distinguishable (with 
resolution of this picture) at much lower period. This is a direct conse- 
quence of the fact that the scalings are infinite, which, in turn, indicates 
that the hyperbolic sets under consideration have Hausdorff dimension 
zero (see next section). 

6. C O N C L U D I N G  R E M A R K S  

We have shown, in general, that minimizing orbits that preserve 
circular ordering approximate the minimizing Cantor set in an exponential 
fashion. Moreover, their detailed configuration in the neighborhood of a 
Cantor set is universal, that is, depends on the single parameter which is 
the eigenvalue associated with that Cantor set. 

To turn the reasoning of this paper into proofs, one has to prove the 
assumption that Df  q' .f-qi converges to the identity (as i-~ oe), and that 
the Lyapunov coefficient )~(p) satisfies the estimate of Assumption 3.2. This 
is done in a sequel (161 to this work. The only caveat is that the norm 
referred to in Assumption 3.1 is somewhat more complicated than indicated 
here. 

We point out here that in one dimension the closure of the union of 
all hyperbolic order-preserving Cantor sets has Hausdorff dimension 
zero. (2~ This, apparently, is also the case for the two-dimensional twist 
maps discussed in this paper. 

We make a final remark about our procedure to calculate the distance 
scalings in Section 5. We have discussed two different procedures, of which 
the second appears to be the more natural in our context. However, it is 
worth pointing out that the formulation of the first procedure does not 
depend on the presence of a hyperbolic structure. Therefore, it may be that 
it gives a natural framework for studying critical problems such as the 
breaking up of invariant curves (for a discussion of that problem see 
ref. 10). 
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APPENDIX  

Consider the map given by (4.1) and its order-preserving recurrent 
orbits as described in Section 4. As noted in that section, we can study the 
symbolic dynamics of these sets. Let N(p) denote the set of bi-infinite 
binary sequences representing points of orbits with rotation number p. If p 
is irrational, we denote by p~/q,, its continued-fraction convergents. In this 
Appendix we demonstrate that, for irrational p, the shortest finite differing 
subsequence, that is, one that occurs in either Z(p) or S(Pn/q,) (but not in 
both) has length q,,. 

We will use the following result./17) A sequence is in Z'(p) if and only 
if, for all s, all of its finite subsequences z of length s satisfy 

r r + l  
- < p < -~ z has either r or r + 1 ones 
s s 

r 
- = p ~:~ z has r ones 
s 

To see that there exists a differing subsequence z* of length q,, note 
that there must be sequences in X(p) (p irrational) of length qr, that have 
Pn + 1 ones according to the quoted result. [Otherwise their rotation 
number (see Section 4) would not be irrational.-] 

We now have to show that all subsequences of length smaller than q, 
that occur in S (p )  also occur in X(p,/qn). We argue by contradiction. Let 
z* be a differing subsequence in X(p) of length w less than qn. Then one 
possibility is that z* has v ones, and that sequences of length w in ~(Pn/q~) 
all have, say, v -  1 or v - 2  ones. So by the result 

v -  2 pn v - 1  v - 1  v ( v v + l )  
< < and - - < p < -  or - < p < - -  

W qn W W W W W 

so that (v -1) /w lies between a convergent and the irrational number, 
which is a contradiction. The other possibility is that z* has v -  1 or v - 2  

ones, but that the ordering of the ones is unlike that of any subsequence 
of length w in S(pn/qn). This, however, implies that the previous possibility 
holds for some subsequence in z* of length smaller than w. In this reason- 
ing the roles of p and p~/qn can be interchanged. 

We remark that by a similar method one can see that for every point 
x in the Cantor  set E~o there is a point y homoclinic to  E q . _ l / q  n whose binary 
expansion matches that of v on {i q~, i _ q ~ + l , . . . ,  iq~}. The reasoning of 
Section 5 then yields the result that (with 3 uniformly bounded and small) 

d(x, y) = )~-q'+~ + 3) q~ 

that is, the square of the distance to the periodic orbit. 
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